Aparna Mangadu, MPH, BS

Research Project & Presentation Portfolio

This portfolio contains abstracts and posters for research projects that I have led. Please refer to the Presentations section of my CV to see where each project has been presented. Contact me at aparnamangadu@gmail.com with any questions!

Table of Contents

CPRIT SUMMER RESEARCH INTERNSHIP – UTHEALTH HOUSTON	1
Summer 2019 Abstract	
SUMMER 2019 POSTER	
CASTNER RANGE PROJECT - UTEP	4
Summer 2020 Abstract	
SUMMER 2020 ABSTRACT SUMMER 2020 POSTER	
Spring 2021 Abstract	
Spring 2021 Poster	3
Spring 2022 Abstract	
SPRING 2022 POSTER	10
SPUR SUMMER RESEARCH INTERNSHIP –UNIVERSITY OF UTAH	11
SUMMER 2021 ABSTRACT – BIG DATA	
SUMMER 2021 POSTER – BIG DATA	
SUMMER 2021 ABSTRACT – LEAD EXPOSURE	
SUMMER 2021 POSTER – LEAD EXPOSURE	15
FERGUSON RISE SUMMER FELLOWSHIP – KENNEDY KRIEGER INSTITUTE	16
SUMMER 2023 ABSTRACT	17
SUMMER 2023 RESEARCH POSTER	
MPH THESIS – THE OHIO STATE UNIVERSITY	19
PROJECT ABSTRACT - MPH THESIS	20
MPH THESIS RESEARCH POSTER	
RESEARCH ANALYST – UNIVERSITY OF UTAH	22
ANTIBIOTIC STEWARDSHIP ABSTRACT	23
Antibiotic Stewardship Poster	
CHOLERA SCOPING REVIEW ABSTRACT	
CHOLERA SCOPING REVIEW POSTER	26

CPRIT Summer Research Internship – UTHealth Houston

Houston, Texas

During the summer of 2019, I completed a research experience for undergraduates (REU) at UTHealth School of Public Health in Houston, Texas. Under the mentorship of Dr. Maria Fernandez, Alison Welski, and Preena Loomba, I worked on a project that would address the stigmas associated with administration of the HPV vaccine among the Hispanic population in El Paso, Texas. To do this, I designed an evidence based and user-friendly interactive website by using the Wix website builder as a base along with other coding and programming techniques. This project was completed under the Cancer Prevention & research Institute of Texas (CPRIT) program at the university and was presented at the end of summer research symposium at UTHealth and the BUILDing Scholars Fall 2019 symposium.

Contents

Summer 2019 Abstract	2
Summer 2019 Poster	3

Summer 2019 Abstract

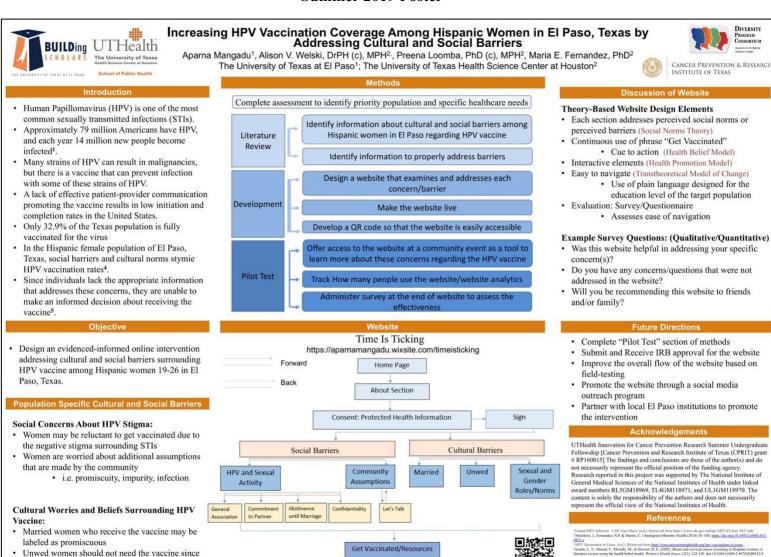
Increasing HPV Vaccination Coverage Among Hispanic Women by Addressing Cultural and Social Barriers

Aparna Mangadu¹, Alison V. Welski², Preena Loomba², Maria E. Fernandez²

¹The University of Texas at El Paso, ²UTHealth School of Public Health

While Human Papillomavirus (HPV) is one of the most common sexually transmitted infections (STIs) among Hispanic women, HPV vaccine initiation and completion rates for this population continue to be low. Hispanic women ages 19-26 within El Paso, Texas have expressed specific cultural and social barriers regarding the HPV vaccine that result in hesitation towards the vaccination process. To address these concerns, I designed an evidence based online intervention that can be accessed both through a computer and mobile phone. The entirety of this project was literature based. By using the Wix website builder as a base along with programming and coding techniques, the website was made to be interactive and simple to navigate. These elements improve self-efficacy by tailoring user experience to address specific concerns. Every section of text was set to be in plain language that is standard to the education level of the target population. The current state of this project includes the completion of the website, but it has yet to be tested. Future directions include partnering with local institutions to promote the website and implement it into their programs. Once piloted, a survey will assess the website effectiveness as well as ease of navigation. This will allow for continuous improvement of the website.

Summer 2019 Poster


DIVERSITY

PROGRAM CONSORTIUM

MB, McRee A-L. Province Community therapeutics, 2016;12(6):1454-1468. white CL, Torrooe E, Meites E, et al. Sexually trans

Mobile format is still in the

development process

End of Website Survey/Questionnaire

they should not be sexually active

about vaccine acceptance

· Sexual and gender roles lead to misinformation

Castner Range Project - UTEP

El Paso, Texas

I began my volunteer work in the Biodiversity Collections at The University of Texas of El Paso in the Spring 0f 2020, but it was not until the Summer for 2020 that I began work on this project. Castner Range is an area in the northeastern section of the Franklin Mountains that is composed of roughly 7000 acres of land. This site is an important vegetation hotspot; however, the most recent checklist was constructed in 2014 and focused on the Franklin Mountains as a whole as opposed to Castner Range Individually. To address this issue, I used modern georeferencing methods and historical specimens to construct a unique plant species checklist for Castner Range, Texas. The initial project was presented at the BUILDing Scholars Summer 2020 and Fall 2020 research symposium. The project was then made more complex by using ecological niche modeling to examine the effects of climate change on sensitive species. These results were presented at the Spring 2021 COURI Symposium and the Spring 2021 Department of Geological Sciences Colloquium. This project was submitted as my undergraduate thesis.

Contents

Summer 2020 Research Experience in The Biodiversity Collections, UTEP, El Paso, TX

Summer 2020 Abstract	5
Summer 2020 Poster	6
Fall 2020-Spring 2022 Work on Castner Range Project	
Spring 2021 Abstract	7
Spring 2021 Poster	8
Spring 2022 Abstract	9
Spring 2022 Poster	10

Summer 2020 Abstract

Applying Georeferencing Methods to Construct a Checklist of Plant Species Found within Castner Range, Texas

¹Aparna Mangadu, ¹Mingna Zhuang ¹The University of Texas at El Paso

Castner Range National Monument is the area of land in El Paso, Texas that stretches from the Northeast section of the Franklin Mountains to the very top of North Franklin Mountain. In total, there are 7,081 acres of land that are currently under strict preservation guidelines. The vegetation of this area has remained true to its original flora despite the weapons firing practice that took place in the area from 1926 to 1966; however, a current checklist of the plant species present in the area has not been constructed due to difficulties in present day surveying. To address this issue, I georeferenced historical plant specimens of the UTEP Biodiversity Collections, recorded for El Paso County, Texas. Using ArcGIS, I constructed a map of all specimens that were found within the boundary of Castner Range to create a checklist and identify historical collecting trends and gaps. Although the coordinates were not always exact, the uncertainty measure that is employed through this georeferencing method allowed for the range of land around the estimated location to remain small. This checklist can be applied to future studies and help justify preservation efforts regarding this area, through the identification of endangered and important species of the area. The list creates an important baseline as comparison for future surveys of the area.

Summer 2020 Poster

Applying Georeferencing Methods to Construct a Checklist of Plant Species Found within Castner Range, Texas

HIODIVERSIT

Aparna Mangadu¹, Mingna Zhuang, PhD²
The University of Texas at El Paso, Department of Geological Sciences, Department of Biological Sciences

Castner Range National Monument

- Area of land in El Paso, Texas that stretches from the Northeast section of the Franklin Mountains to the top of North Franklin Mountain¹
- · 7,081 acres of land1
- Dry climate with hot summers and mild winters²
- Average annual rainfall of 8 inches²
- Land is currently under strict preservation guidelines³ (Castner Range Preservation Movement)
- A current checklist of the plant, moss and fungal species present in the area is not available

Objective

 Construct a thorough plant species checklist and map of sampling for Castner Range National Monument by georeferencing historical plant specimens of the UTEP biodiversity collections that are recorded for El Paso County, Texas.

Methodology

Use the point-radius georeferencing method with Geo-locate to assign coordinates to the historical plant specimens of the UTEP Biodiversity Collections, recorded for El Paso County, Texas on Arctos, the collection management system

Using ArcGIS, construct a map of all specimens collected within the boundaries of Castner Range (include specimen records from Seinet Database)

3

Create a checklist of unique plants found within the range and identify any trends and gaps in collecting.

Point-Radius Georeferencing Method⁴

- Used to assign coordinates to a specimen based on the locality string/description (point)
- · Takes the entire area noted in the description into account (radius)
- · Includes associated uncertainties (radius)
- · Followed MaNIS Georeferencing Guidelines

Results

Plant Summary Totals

Total Families	120
Asteraceae – Daisy Family	293 species
Poaceae - Grass Family	155 species
Total Genera	335
Brickellia - Brickell bush	56 species
Cryptantha - Popcorn Flowers	24 species
Total Species	558
Brickellia californica - California Brickell bush	21 collection records
Total Specimen Records	1586

Map of Collected Specimens

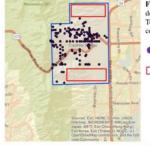


Fig. 1 map of plant sampling done within Castner Range, Texas. Each point represents a collected specimen.

Collected Specimen
 (May control claster)

Unsurveyed Areas

References

¹ Castner Range, (n.d.), Retrieved from http://castnerrangenationalmonument.org/the-land

³ "Environmental Protection of Heavy Weapons Ranges: Technical and Practical Solutions." 2019
⁴ John Wieczorek, Çinghua Guo & Robert Hjimans (2004) The point-radius method for georeferencing locality descriptions and calculating associated uncertainty, International Journal of Geographical Information Science, 18:8, 745-767, DOI: 10.1080/13658810412331280211

Gaps in Historical Surveys

- · Gaps in Collection Dates
 - Majority of plant specimen collections for the Castner Range Region were done between 1975-1983
 - < 200 specimens have been recorded from 1990 to 2005
 - There have been no new collections since 2005
- · Gaps in Survey Areas
 - The northern most and southeastern most regions of Castner Range have not been surveyed (Fig. 1)

Discussion and Future Directions

- The checklist is a baseline for future surveys in the region and identifies the areas and taxa that may need more sampling
- Preservation efforts for Castner Range can be justified through the aid of this list by identifying important and endangered species
- Although majority of the region is well sampled, surveys for the northern most and southeastern most regions should be conducted

Acknowledgements

Research reported in this project was supported by The National Institute of General Medical Sciences of the National Institutes of Health under linked award numbers RL5GM18969, TL4GM118971, and UL1GM118970. The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health.

This project received funding from the NSF 1902078 Grant

Additional information and surveys regarding the region of Castner Range were provided by Scott Cutler and The Frontera Land Allaince

Spring 2021 Abstract

Constructing a Plant Species Checklist for Castner Range, Texas with the Intent of Examining Bioindicators to Study the Effects of Climate Change

¹Aparna Mangadu, ¹Mingna Zhuang

¹The University of Texas at El Paso

Castner Range National Monument is the area of land in El Paso, Texas that stretches from the Northeast section of the Franklin Mountains to the very top of North Franklin Mountain. The vegetation of the area includes a variety of desert scrub and drought resistant plants and has remained true to its original flora despite the weapons firing practice that took place in the area from 1926 to 1966. Since the native vegetation is still present, some plant species may serve as bioindicators and aid in analyzing the health of the ecosystem. An issue is that a current checklist of the plant species present in the region has not been constructed due to difficulties in present day surveying. To address this, I georeferenced historical plant specimens of the UTEP Biodiversity Collections, recorded for El Paso County, Texas and obtained georeferenced records from Seinet and GBIF. Using ArcGIS, I constructed a map of all specimens that were found within the boundary of Castner Range to create a checklist and identify historical collecting trends and gaps. The iPlants Collaborative Platform was used to confirm the scientific names before transfer to the ecological niche modeling platform. The data from this checklist along with MaxEnt will be used to model species distribution and ultimately determine which plant species are most sensitive to climate change, how they will be affected, and how severely they will be affected. With the information gathered from modeling, the overall ecosystem health for Castner Range can be estimated.

Spring 2021 Poster

Constructing a Plant Species Checklist for Castner Range, Texas and Identifying Important Species Through Species Distribution Models

Aparna Mangadu¹, Mingna Zhuang, PhD² The University of Texas at El Paso, Department of Geological Sciences1, Department of Biological Sciences2

Introduction

- · Castner Range is an area of land in El Paso, Texas that stretches from the Northeast section of the Franklin Mountains to the top of North Franklin Mountain
- · The most recent plant checklist is from 2014 from Dr. Richard Worthington but it focuses on the Franklin Mountains as a whole4
- It is home to several endemic plant species and other important vegetation communities
- · The health of an ecosystem can be partially determined by the plants present in the area, which can be sensitive to external factors such as temperature change⁵
- · The identification of climate sensitive plant species will allow for the analysis of the effects of environmental change in the region6

Objective

Construct a thorough compilation of occurrences and a plant species checklist for Castner Range, Texas to serve as a baseline for research and determine sampling gaps in geography, taxonomy and time. Secondly, we will identify climate sensitive plant species from this list and model impacts of climate change on these species.

Methodology

Georeferencing

Use the point-radius georeferencing method with Geo-Locate to assign coordinates to historical plant specimens of the UTEP Biodiversity Collections. recorded for El Paso County, Texas

Georeferenced a total of 1,410 specimens GEOLocate

The point radius georeferencing method assigns coordinates based on the locality string (point) and includes all areas noted in the description as an uncertainty measured (radius)2

Using QGIS, construct a map of all specimens collected within the boundaries of Castner Range (include specimen records from Seinet Database and GBIF). A total of 1,702 occurrences were used for the map

Checklist

Create a checklist of unique plants found within the range and confirm taxonomic names with iPlants Collaborative Platform.

Modeling

Use iDigBio's resources, climate data from WorldClim, and MaxEnt to create distribution models for the Chihuahuan Desert in order to identify which plant species of Castner Range are sensitive to climate change in Castner. Models were only created for species with more than 5 occurrences.

The dataset for the Chihuahuan Desert had a total of 595,408 occurrences The occurrences were divided for each distribution map based on the species being looked at

Results Plant Collections in Castner Range, TX

Fig. 1 Map of plant sampling done within Castner Range, Texas. Each point represents

Species Checklist		
Summary		
Total plant families	120	Т
Total plant genera	343	
Total unique species	625	
Total specimen records	1702	
New species not in previous list	136	

Conservation Status	
Species	Status
Ferocactus wislizeni	Vulnerable
Fraxinus pennsylvanica	Endangered

Ecological Distribution Models of Two Example Species – Modeled for the Chihuahuan Desert

Ferocactus wislizeni Present and Future Suitable Conditions

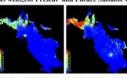


Fig. 2 Distribution models of the present (left) and future (right) (year 2050) suitable conditions for the species Ferocactus wislizeni. Warmer colors (green to red) indicate higher suitability

Fraxinus Present and Future Suitable Conditions

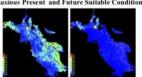


Fig. 3 Distribution models of the present (left) and future (right) (year 2050) suitable conditions for the genus Fraxinus. Warmer colors (green to red) indicate higher suitability.

Data Gaps and Additions

- · Majority of plant specimen collections were done between 1975-1983, and there have been no
- collections since 2005 The northern most and southeastern most regions have not been surveyed (Fig.
- Georeferenced data filled in gaps of the previous list
 - 136 species added

Species Checklist & MaxEnt Modeling

Important Plant Species · Ferocactus wislizeni and Fraxinus pennsylvanica have

high priority conservation statuses Significant Climate Variables and Changes in Vegetation

- · Precipitation was a significant variable and is predicted to decrease throughout the Chihuahuan Desert
- · If precipitation continues to decrease, some species will lose habitat suitability
- · For example, Fraxinus loses habitat suitability everywhere except for regions in the North (includes Castner)
- Castner Range should be conserved to protect the vegetation communities that need rainfall (i.e. Fraxinus)
- **Future Directions** Survey unsampled
- areas of Castner Range Identify
- endemic and other climate sensitive plant species
- Identify the effects of other climate variables

Research reported in this project was supported by The National Institute of General Medical Sciences of the National Institutes of Health under linked award numbers RL5GM18969, TL4GM118971, and UL1GM118970. The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health.

This project received funding from the NSF 1902078 Grant, IMLS IGSM-245733-OMS-20 Grant, and Additional information and surveys regarding the region of Castner Range were provided by Scott Cutler and The Frontera Land Alliance

**Common Reage 1, ed. 3. Review of from happ://finearedatal.lance.org/circatechange 2-febb Watercente, Optopate Gross B. Bord Hijman 2, 500:11 The prime safe with the prime of the proceedings and calculating associated uncertainty, International Journal of Georgiaphical Information Science, 183, 7-557-7, DOI 10.1016/10.1558/561612(23)12002(1) Congraphical Information Science, 183, 7-557-7, DOI 10.1016/10.1558/561612(23)12002(1) Congraphical Information Science, 183, 7-557-7, DOI 10.1016/10.1558/561612(23)12002(1) Congraphical Information Science, 193, Congraphical Science, 193, DOI 10.1016/10.1568/1

_2014, florancomexicans Test wordpress; com2014/08/Ernalismus; pdf. 'Asit N, Malik, M, & Chandfry, F. N. (2018). A review of on environmental pollution bioindicators. Pollution, 4 (1), 111-118. 'Ernat, W. H. O. (2003). The use of higher plants as bioindicators. In Trace metals and other contaminants in the omirronment (Vol. 6, pp. 423-463). [DevVer.

Spring 2022 Abstract

Constructing a Plant Species Checklist for Castner Range, Texas with the Intent of Examining Bioindicators to Study the Effects of Climate Change

¹Aparna Mangadu, ¹Mingna Zhuang

¹The University of Texas at El Paso

Castner Range National Monument is an area of land in El Paso, Texas that stretches from the northeast section of the Franklin Mountains to the peak of North Franklin Mountain. The vegetation of the area includes a variety of desert scrub and endemic plant species. In spite of the weapons firing practice that took place in the area from 1926 to 1966, the original flora is still intact. Additionally, Castner Range receives the heaviest amount of rainfall for the Franklin Mountains, which possibly gives rise to unique vegetation patterns. Since the native vegetation is still present, some plant species may serve as bioindicators in analyzing the health of the ecosystem. A current checklist of the plant species present in the region has not been constructed due to difficulties in present day surveying. To address this, we georeferenced historical plant specimens of the UTEP Biodiversity Collections recorded for El Paso County, Texas and compiled these records with those from SEINet and GBIF in a checklist and map of Castner Range. Using this compilation of records, we identified historical collecting trends and gaps. In total, 120 families, 343 genera, and 636 species were identified from 1784 specimen records. Using this data, we also used MaxEnt to construct species distribution models for important species, in order to assess the effects of climate change on this region.

Spring 2022 Poster

Constructing a Plant Species Checklist for Castner Range, Texas and Identifying Important **Species Through Species Distribution Models**

Aparna Mangadu¹, Mingna Zhuang, PhD², Michael L. Moody, PhD² The University of Texas at El Paso, Department of Geological Sciences¹, Department of Biological Sciences²

INTRODUCTION

- Castner Range is an area of land in El Paso, Texas that stretches from the northeast section of the Franklin Mountains to the top of North Franklin Mountain. It is currently a focus of local conservation efforts.1
- The most recent plant checklist is from 2014 from Dr. Richard Worthington, but it focuses on the Franklin Mountains as a whole and may not be comprehensive due to lack of databased records2
- It is home to important, potentially climate change sensitive vegetation communities and is the center of recent conservation efforts.3,4

OBJECTIVES

- · Use a database and mapping approach to construct a thorough compilation of occurrences and a plant species checklist for Castner Range, Texas.
- Determine sampling gaps in geography, taxonomy and time
- Identify/model impacts of climate change for climate sensitive plant species from this list

METHODOLOGY

Georeferencing

Assign coordinates5 to historical plant records with missing coordinates, recorded for El Paso County, Texas Georeferenced a total of 1,410 specimens

Mapping & Species Checklist

Construct a map and checklist of all specimens collected in Castner Range (include specimen records from SEINet Database and GBIF).

1,784 occurrences total

Modeling

Use climate data from WorldClim and MaxEnt to create distribution models for the Chihuahuan Desert to identify climate sensitive plant species in Castner Range. (only species with >5 occurrences) The Chihuahuan Desert dataset had a total of 595,408 occurrences that was divided based on the species of interest

RESULTS & DISCUSSION

There are large noticeable sampling gaps for Castner Range

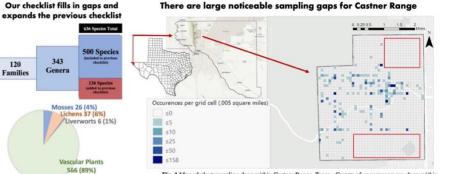
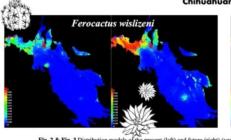



Fig. 1 Map of plant sampling done within Castner Range, Texas. Counts of occurrences are show within each .005 square mile grid cell to protect exact localities. Sampling gaps indicated with a red outline.

Castner Range should be conserved to protect species that will lose habitat suitability throughout the **Chihuahuan Desert**

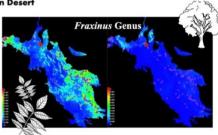


Fig. 2 & Fig. 3 Distribution models of the present (left) and future (right) (year 2050) suitable conditions for the species Ferocactus wislizeni (Fig. 2) and the Genus Fraxinus (Fig. 3). Warmer colors (green to red) indicate higher suitability. The location of Castner Range is marked with a red circle.

Data Gaps Majority of plant specimen collections

were done from

new collections

The northern and

southern regions

surveyed (Fig. 1)

have not been

since 2005

1975-1983, and no

Checklist and MaxEnt Models

Important Plant Species · Ferocactus wislizeni (southwestern barrel cactus) and Fraxinus pennsylvanica (green ash) have high priority conservation statuses

Significance

(vulnerable and endangered)

- · Precipitation was a significant variable and is predicted to decrease throughout the Chihuahuan Desert, and some species will lose habitat suitability if this trend continues
- · For example, Fraxinus loses habitat suitability everywhere except for regions in the North/Castner (Fig 3)
- · Castner Range should be conserved to protect these sensitive species

Future Directions

- · Survey unsampled areas of Castner Range
- · Identify other climate sensitive species
- Confirm the presence of common species to El Paso

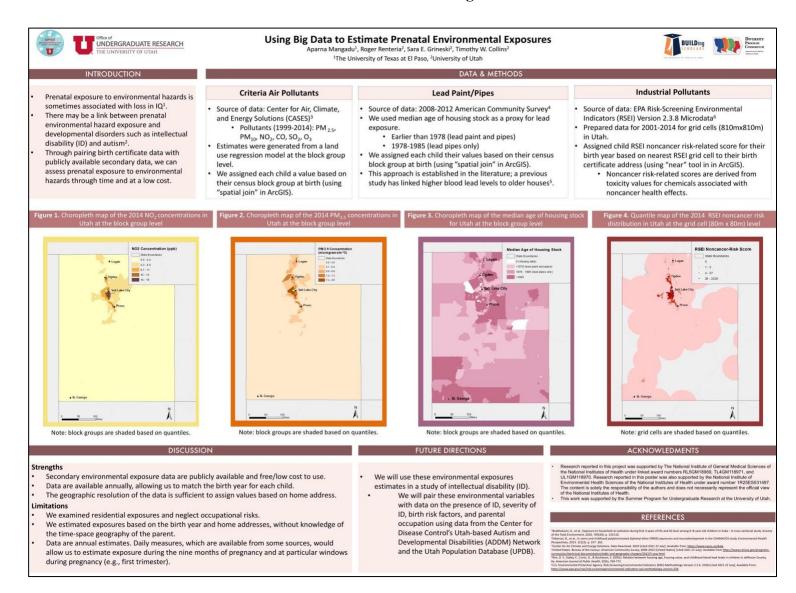
SPUR Summer Research Internship –University of Utah

Salt Lake City, Utah

During the summer 2021, I completed a research experience for undergraduates (REU) at the University of Utah in Salt Lake City, Utah. Under the mentorship of Dr. Sara E. Grineski and Roger Renteria, I completed a project that focused on using big data sources to analyze exposure to environmental hazard data. The environmental hazards that we looked at were criteria air pollutants, industrial pollutants, and lead exposure. This project was presented at the SPUR Summer Research Symposium at The University of Utah. My secondary project used big data sources to analyze lead exposure throughout school districts in Utah and its relation to intellectual disability and prevalence of autism spectrum disorder in children. We paired the public housing age data with the data from the UPDB to conduct this analysis.

Contents

Summer 2021 Abstract - Big Data	12
Summer 2021 Poster - Big Data	13
Summer 2021 Abstract – Lead Exposure	14
Summer 2021 Poster - Lead Exposure	15


Summer 2021 Abstract - Big Data

USING BIG DATA TO ESTIMATE PRENATAL ENVIRONMENTAL EXPOSURES Aparna Mangadu¹ (Roger Renteria², Sara E. Grineski², Timothy W. Collins³)

¹Department of Geological Sciences, University of Texas at El Paso ²Department of Sociology, University of Utah ³Department of Geography, University of Utah

Research has revealed that prenatal exposure to environmental hazards is associated with loss in IQ. Prenatal exposures may also be linked to developmental disorders such as intellectual disability and autism. Measuring prenatal exposures directly is costly, time intensive and somewhat invasive, making it hard to scale up to a population-level. Through the use of publicly available data, researchers can assess prenatal exposures to environmental hazards at a low cost. The goal of this project was to use the available data to estimate prenatal exposures for Utah children (based on birth certificate data) to criteria air pollutants, industrial pollutants, and residential lead exposures. We used data from the Center for Air, Climate, and Energy Solutions (CASES) to estimate annual criteria air pollution exposure at the census block group level. We used the US EPA's Risk-Screening Environmental Indicators (RSEI) to estimate annual non-cancer health risks in 810x810 meter grids due to industrial emissions. We used the American Community Survey (ACS) median age of housing stock block group variable to estimate exposure to lead paint and pipes (≤1978, 1978-1985). Children were assigned pollution estimates pertaining to their birth year, based on their home address. Strengths of using secondary data to estimate prenatal exposures include that it is often low cost and available annually, which matches the birth year, and the geographic resolution is sufficient. Limitations include that we only examine residential exposures, neglecting occupational risks; we base lead exposure on birth year and home address, without knowledge of the time-space geography of the parent; and we use annual averages that are not specific to critical windows of pregnancy. The next step in the project is to use these data to examine associations between prenatal hazardous exposures and intellectual disability in children. Examining this association may highlight a health consequence of increased exposure and provide results that emphasize the need for better protections in vulnerable communities.

Summer 2021 Poster - Big Data

Summer 2021 Abstract – Lead Exposure

Associations between an Indicator of Perinatal Lead Exposure and Intellectual Disability in Utah Children with and without Autism Spectrum Disorder

Aparna Mangadu¹, Roger Renteria², Sara E. Grineski², Timothy W. Collins², Amanda V. Bakian², Deborah Bilder²

¹The University of Texas at El Paso, ²University of Utah

Individuals with intellectual disability (ID) and their families experience higher health care costs, increased stress, and poorer overall health than those without. According to the American Association of Intellectual and Developmental Disabilities, an individual has ID if they are significantly limited in both intellectual functioning (e.g., IQs under 70) and adaptive behavior (e.g., social and practical skills). Lead has well-established neurological effects following prenatal and early childhood exposure. Higher blood lead levels have been associated with living in older housing, making older housing a potential indicator of lead exposure. Few studies have examined differences in potential lead exposures between children that have ID with and without ASD. The aim of this project was to investigate if an indicator of perinatal exposure to lead is associated with children's odds of intellectual disability with and without autism spectrum disorder (ASD). Children with ID (cases) were identified by the Utah site of the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring (ADDM) Network. The Utah Population Database (UPDB) was used to gather information on the cases (i.e., children with ID) and was used to identify controls (i.e., neurotypical children). Data were analyzed using multivariable generalized estimating equations. We found that the effects of the lead exposure indicator variable were significant for children who have ID and ASD as opposed to ID without ASD. Findings merit additional research looking at direct measures of lead exposure and suggest hypotheses that should be tested in future studies. Limitations of the study included that we did relied on proxy measures of exposure, focused only on Utah, and drew the address information from birth certificates, which does not include the length of residence at that address. Local lead abatement resources for families include Salt Lake County Lead Safe Housing, Utah Lead Coalition, and the Utah Blood Lead Registry.

Summer 2021 Poster – Lead Exposure

Associations between an Indicator of Perinatal Lead Exposure and Intellectual Disability in Utah Children with and without Autism Spectrum Disorder

Aparna Mangadu¹, Roger Renteria², Sara E. Grineski², Timothy W. Collins², Amanda V. Bakian², Deborah Bilder²

¹The University of Texas at El Paso, ²University of Utah

INTRODUCTION

- Individuals with intellectual disability (ID) and their families experience higher health care costs, increased stress, and poorer overall health^{1,2} than those without.
- According to the American Association of Intellectual and Developmental Disabilities, an individual has ID if they are significantly limited in both intellectual functioning (e.g., IQs under 70) and adaptive behavior (e.g., social and practical skills).³
- Lead has well-established neurological effects following prenatal and early childhood exposure, which include reductions in cognitive and executive functioning and ID.^{4.5.6} Higher blood lead levels have been associated with living in older housing^{7.8}, making older housing an indicator of lead exposure.
- Few studies have examined differences in lead exposures between children that have ID with and without ASD. While it is often not acknowledged that many persons with ID have co-occurring ASD, it is important to draw this distinction because persons with ID and ASD have different needs from individuals with ID or ASD alone.⁹

OBJECTIVE

The aim of this project is to investigate if an indicator of perinatal exposure to lead is associated with children's odds of intellectual disability with and without autism spectrum disorder.

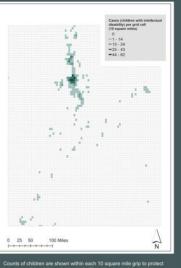
METHODOLOGY

Data

Children with ID (cases) were identified by the Utah site of the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring (ADDM) Network.

- •The Utah Population Database (UPDB) was used to gather information on the cases (i.e., children with ID) such as addresses and birth risk factors and was used to identify controls (i.e., neurotypical children) matched by sex, year of birth, and county of birth (3 controls per case).
 - Analysis n (all ADDM cases with ID and controls): 1,620
 - Analysis n (ADDM cases with ID and ASD and controls): 745
 - Analysis n (ADDM cases with ID and no ASD and controls):
 872

Variables


•Dependent Variables: ID (Yes/No)

- Focal Independent Variable: Lead Exposure Proxy, based on median age of housing stock in block group hosting maternal residential birth address
 Data are from the 2008-2012 American Community Survey
 - •3 categories: 1977 and earlier (lead paint and pipes), 1978-1985 (lead pipes only), and 1986+ (reference group)
- •Additional covariates: mother's education, low birthweight, very premature, age of mother, race/ethnicity of child

Analysis

· Multivariable Generalized Estimating Equations (GEE)

The effect of the lead exposure indicator variable is significant for children who have ID <u>and</u> ASD (OR: 2.00, CI: 1.363, 2.941) as opposed to ID <u>without</u> ASD (OR: 1.38, CI: 0.986, 1.941).

the privacy of the children in the study. Exact locations of the children are not shown.

Scan to view additional tables.

RESULTS

Table 1. Results from a binary logistic generalized estimating equation (GEE) predicting children's odds of ID for all ADDM cases (Model A) (r=1620), ADDM cases with ID and ASD (Model B) (r=745), and ADDM cases with ID and ASD (Model C) (r=872).

	Model A	Model B	Model C
Parameter	Exp(B) (CI) p	Exp(B) (CI) p	Exp(B) (CI) p
Controls:			
Intercept	0.537 (0.291 - 0.990) *	0.824 (0.471 - 1.444)	0.389 (0.167 - 0.904) *
Mother's Education	0.777 (0.692 - 0.872) *	0.704(0.617 - 0.802) *	0.836 (0.716 - 0.976) *
Not Low Birthweight	ref	ref	ref
Low Birthweight (<2500 g)	3.329 (2.372 - 4.672) *	2.741(1.420 - 5.290) *	3.567 (2.343 - 5.430) *
Very Premature (<32 wk.)	5.390 (2.708 - 10.730) *	4.222(1.068 - 16.689) *	6.696 (3.003 - 14.931)
Mother is 21-35 yrs.	ref	ref	ref
Older Mother (>35 yr.)	1.412 (1.014 - 1.968) *	1.278(0.775 - 2.107)	1.562 (1.047 - 2.330) *
Young Mother (<21 yr.)	1.232 (0.743 - 2.040)	1.084 (0.605 - 1.943)	1.345 (0.646 - 2.800)
NL White Child	ref	ref	ref
Latinx Child	0.836 (0.655 - 1.067)	0.589 (0.372 - 0.933) *	1.170 (0.812 - 1.687)
NL/Non-White Child	0.954 (0.615 - 1.481)	1.072 (0.411 - 2.800)	0.918 (0.413 - 2.040)
Age of Housing:			
Homes (1986 and later)	ref	ref	ref
Homes (1977 and earlier)	1.599 (1.197 - 2.136) *	2.002 (1.363 - 2.941) *	1.383 (0.986 - 1.941)
Homes (1978-1985)	1.080 (0.777 - 1.501)	1.498 (0.906 - 2.157)	0.820 (0.536 - 1.254)

Note: Models A., B., and C use binomial distribution, logistic link function, and exchangeable correlation matrix. Models adjust for clustering based on child? Is birth year and by school district at birth year. Exp(B) is the Odds Ratio and results of this table have a 95% (Confidence Assembled Confidence). The Confidence Assembled Confidence are confidenced to the Confidence Assembled Confidence and Confidence are confidenced to the Confidence are confidenced to the Confidence and Confidence are confidence and Confidence are confidenced to the Confidence are confidence and Confidence are confidence and Confidence are confidence and Confidence are confidenced and Confidence are confidence and Confidence are confidence and Confidence are confidence are confidence and Confidence are confidence and Confidence are confidence and Confidence are confidence are confidence and Confidence are confidence and Confidence are confidence are confidence and Confidence are confidence are confidence and Confidence are confidence are confidence are confidence are confidence and Confidence are confidence are confiden

DISCUSSION/CONCLUSIONS

Housing Age and Lead Exposure

- Findings merit additional research looking at direct measures of lead
- Findings suggest several hypotheses: Could some of the relationship between lead and ID be due to co-occurring ASD? Could lead be more strongly associated with ID with ASD because of etiological reasons making exposures less likely to result in ID without ASD?

Limitations

- We used housing stock age at the block group level as an indicator of lead exposure. While this is a measurement used in previous studies¹⁰, we do not have individual-level data on housing age or actual measures of perinatal lead exposure.
- The study is focused only on Utah and future studies should be conducted elsewhere.
- We draw address information from birth certificates and so we do not know the family's length of residence at that address.

Implications

While the use of lead in the US has decreased dramatically over the last decades, historical sources of exposures may still be affecting children today. Local lead abatement resources for families include Salt Lake County Lead Safe Housing (https://sico.org/lead-safe-housing/), Utah Lead Coalition (https://sichaheadcoalition.org/) and the Utah Blood Lead Registry https://goth.health.ush.gov/pcht-view/togic/fichlhood/Blood(lead html)

ACKNOWLEDMENTS

Recent in report of this project on an apportate by the site medical section of discount of the foliation of relative of the foliation of the

We appreciate the unique collaboration provided across the University of Usah, Interrequesian Healthcare, Usah Registry of Autorn and Developmental Disabilities, Usah Departs Health, and the Pedigree and Population Resource (funded by the Huntsman and Interreportain Healthcare Concer Foundation).

REFERENCES

Naments M. & Since, 5, (2018). Conting them between of one to Adals with Disabilities causes for Printy and Practice.

Simmatic, 5, sames, 1, a Shortest, 1, 1003, The princip cause of either disable can be reinforced disability on a serious in data processing invest for each or heart in the local series in the continuation of the Continuation o

Streeting, A silverhoom**, I. Allering**, C., & Barren, S. (2019). Rol of reposure to are polytorar among further dischars with and without residencial classifiers. Invented of terminestal Classifiers, Invented of Section 1972, 183, 2019. Control of Section 1972, 2019. Control of Secti

Whater, C. Falent, T. T. Lathrop, K. E., Westher, K. C., Pouget, R. V., & Colorosso, M. L. (2012). The effects of the urbox bold envisionment on the ignated distribution of hand in regulatorial sold, Enteroperatory, and the control of the control

Ferguson RISE Summer Fellowship – Kennedy Krieger Institute

Baltimore, Maryland

During the summer of 2023, I participated in the Dr. James A. Ferguson RISE Program at Kennedy Krieger Institute. This experience allowed me to work with secondary quantitative data on a project investigating the link between socioeconomic status/exposure to environmental hazards and variance in social outcomes in children with CP. I presented my results at the 2023 Centers for Disease Control and Prevention Showcase and Expo in July of 2023 and the American Public Health Association 2024 Annual Meeting.

Contents

Summer 2023 Abstract	17
Summer 2023 Research Poster	18

Summer 2023 Abstract

Social Determinants and Social Outcomes: An Examination of Academic and Community Participation Outcomes in Children with Cerebral Palsy

Aparna Mangadu¹, Nicole Gorny², Paul Salib², Eric Chin²

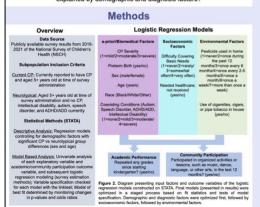
¹The Ohio State University, ²Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine

<u>Background</u>: Children with cerebral palsy (CP) experience significant challenges in academic and community participation due to a combination of motor, sensory, and behavioral impairments. While biomedical factors contribute to these challenges, other socioeconomic and environmental influences may play a critical role and remain underexplored. This study investigated rates of grade retention and extracurricular community participation in children with CP and their neurotypical peers and risk factors for poor outcomes amongst children with CP.

<u>Methods</u>: We examined nationally representative 2016-2020 National Survey of Children's Health data to investigate if children with CP experienced more grade retention and less extracurricular participation than neurotypical peers while exploring associated clinical, socioeconomic and environmental risk factors using logistic regression models.

Results: Compared to neurotypical children, we estimate that children with CP in the U.S. more frequently repeated grades (Prevalence Ratio (PR): 2.4 [95% CI: 1.6-3.6]) and participated less in organized activities (PR: 0.5 [0.3-0.6]). Within children with CP, grade retention was significantly associated with more severe CP and coexisting intellectual disability (OR: 7.2 [1.8-29] and 3.3 [1.6-7.1] per severity level, respectively), less severe coexisting autism and speech disorders (OR: 0.40 [0.2-0.8] and 0.25 [0.1-0.5] per severity level, respectively), presence of chronic pain (OR: 10 [2-55]), and increased home pesticide use (OR 4.0 [1.8-8.9] per exposure level). Low community participation was significantly associated with male sex (OR: 2.5 [1.1-5.5]).

<u>Conclusions:</u> Children with CP frequently experience grade retention and decreased community participation. Coexisting diagnoses impact risk of grade retention. Home pesticide exposure may serve as an additional risk factor or proxy for unmeasured socioeconomic variables, suggesting that preventable social/environmental determinants contribute to risk of grade retention in children with CP.


Summer 2023 Research Poster

Social Determinants and Social Outcomes: An Examination of Academic and Community Participation Outcomes in Children with Cerebral Palsy

Aparna Mangadu, BS1, Nicole Gorny, MS2, Paul Salib, MS2, Eric Chin, MD2

¹ The Ohio State University College of Public Health; ² Phelps Center for Cerebral Palsy & Neurodevelopmental Medicine, Kennedy Krieger Institute

Introduction Cerebral Palsy (CP) is the most common physical impairment disability among children (1-4 per 1,000 live births). It impacts balance, posture, and muscle control^{1,2} Previous studies have shown that many children with CP have decreased participation in everyday activities and lower overall academic performance possibly due to impairments in motor function or other cognitive/behavioral factors3,4. Although prior research has investigated the link between maternal exposure to environmental hazards such as agricultural pesticides/maternal smoking and risk of CP 5.6, the possible effect of these exposures on social outcomes has not been examined. Community Figure 1. Social ecological model depicting factors that affect the quality of life for children with CP. Adapted from the Bronfenbrenner Social Ecological Model, 1979 Research Question Do socioeconomic factors and environmental exposures explain additional variance in social functioning among children with CP beyond what can be explained by demographic and diagnosis factors?

Descriptive Statistics Table 1. Cohort Characteristics: Functional outcome measures, socioeconomic factors, & environmental (n = 493) (n = 151,089) alence (95% CI) Prevalence (95% CI) 12% (8% - 18%) 5% (5% - 5%) <0.0001 23% (17% - 30%) 49% (48% - 50%) <0.0001* activities Needed healthcare not Use of cigarettes, 21% (15% - 29%) 14% (14% - 15%) <0.0001 cigars, or pipe tobacco in home Multi-level Variables Difficulty covering basic needs 26% (20% - 34%) 48% (48% - 49%) 36% (28% - 45%) 35% (34% - 35%) 0.0185* Somewhat often 27% (18% - 38%) 14% (13% - 14%) 11% (6% - 18%) 3% (3% - 4%) Pesticide used in home 0.7% (.2% - 2.8%) 0.7% (.5% - 1%) 2.8% (.9% - 8.4%) 1% (.8% - 1.3%)

Table 1. Controlling for sex and age, children with CP more frequently repeated grades, and participated less in organized activities. They more often did not receive needed healthcare and more often had difficulty covering basic needs Children with CP were more likely to be exposed to tobacco smoke and pesticides. *Significant p-value <0.05

16% (8.5% - 27.8%) 12% (11% - 12%)

46% (35% - 57%) 47% (46% - 48%)

2.8% (.9% - 8.4%)

9.2% (5% - 16%)

10% (6.1% - 16%)

1/6 months

Results

Logistic Regression Models

Table 2. Logistic Regression: Factors associated with repeating a school grade. Sample Pseudo R² = 0.14 Odds Ratio (95% CI) p-valu Binary Variables Child's sex (reference: male) 0.98 (0.25 - 3.82) reterm birth (reference: no) 3.65 (0.68 - 19.65) lealthcare needed not 0.67 (0.07 - 6.71) eceived (reference: no) Ordinal/Continuous Variables

Cerebral palsy severity (per severity level)	2.68 (0.81- 8.94)	0.108
Coexisting autism severity (per severity level)	0.25 (0.11 - 0.58)	0.001*
Coexisting intellectual disability severity (per severity level)	3.47 (1.55 - 7.78)	0.003*
Coexisting speech disorder severity (per severity level)	0.35 (0.20 - 0.61)	<0.001*
Pesticide use in home (per application level)	3.61 (1.65 - 7.89)	0.001*
Nominal/Ca	tegorical Variables	
Child's age (refer	rence: Aged 5-10 year	s)
Aged 11 – 13 years	0.34 (0.06 - 1.96)	0.228

0.29 (0.07 - 1.18) 0.085

increases in children with CP, they are more likely to repeat a grade (OR: 3.47). As speech disorder severity increases in children with CP, they are less likely to repeat a grade (OR: 0.35). As autism severity ases in children with CP, they are less likely to repeat a grade (OR: 0.25). As pesticide use in homes increases, a child with CP is nore likely to repeat a grade (OR: 3.61).*Significant p-value <0.05

Aged 14 - 17 years

Variable	Odds Ratio (95% CI)	p-value
Binary	Variables	
Child's sex (reference: male)	2.42 (1.10 - 5.53)	0.028*
Preterm birth (reference: no)	1.06 (.48 - 2.31)	0.893
Cigarette use in the house (reference: no)	0.61 (0.19 - 2.0)	0.416
Healthcare needed not received (reference: no)	0.75 (0.21 - 2.61)	0.651
Ordinal/Cont	inuous Variables	
Cerebral palsy severity (per severity level)	0.54 (.3096)	0.034
Coexisting autism severity (per severity level)	1.12 (.69 - 1.81)	0.654
Coexisting intellectual disability severity (per severity level)	0.85 (.59 - 1.22)	0.388
Coexisting speech disorder severity (per severity level)	1.10 (0.71 - 1.72)	0.662
Difficulty covering basic needs (per application level)	0.71 (0.45 - 1.13)	0.147
Nominal/Cate	egorical Variables	
Child's race (refe	erence: White only)	
Black only	0.43 (.15 - 1.28)	0.131
Out	0.00 (00 . 0.00)	

Table 2. Factors not included in this table did not improve model fit and were not included in the model. As intellectual disability severity model fit and were not included in the model. Children with CP who are female are more likely to participate in organized who are remained are more likely to participate in organized activities (OR: 2.42). As cerebral palsy severity increases, children with CP are less likely to participate in organized activities (OR: 0.54), *Significant p-value <0.05

Conclusion & Implications

1% (.8% - 1.3%) 0.0005* 9% (9% - 10%)

18% (18% - 20%)

- · This project sought to investigate associations between socioeconomic factors and environmental exposures and social outcomes among
- . Children with CP are at elevated risk of academic failure and decreased participation in organized activities—even accounting for demographic
- · Pesticide use in homes is associated with increased odds (OR: 3.61) of a child with CP repeating a grade—even accounting for diagnosis severity, demographic factors, and socioeconomic factors.
- · This project suggests a need to further explore impacts of environmental exposures and quality of life for children with CP.

Strengths & Limitations

- · The dataset used is large, and the use of statistical weights allows us to make U.S. population-level inferences. This survey data is rich—allowing examination of socioeconomic and environmental factors alongside demographic and diagnosis-related factors. Low pseudo R2 (<15% sample variance explained in both models) indicates substantial uncaptured variance:
 - Proxy measures were indirect (e.g., parent-reported grade repetition rather than GPA letter grades, etc..) and Additional factors were unavailable (e.g., geographic location, additional
- environmental exposures [e.g., mold, particulate matter, microorganisms]) This cross-sectional study does not allow causal inferences regarding apparent

References

**Curters for Disease Cortical and Prevantion (2022, May 2). Coarbon Peloy: Minh of pCP high planes (large disposition) and produced produced and prevantion (2022, May 2). Coarbon Peloy: Dath 4 Statistics. Tilings (large disposition) and produced pelops (large large disposition). A Coarbon Peloy: Dath 4 Statistics. Tilings (large disposition) and propriet (1-Magnesse A., Devent M. Lee, M. M. Group). Produced on and represent of times and solidars in the coarbon pelops. (In the Coarbon Pelops (large disposition)). The Coarbon Pelops (large disposition) and propriet (large disposition). The Coarbon Pelops (large disposition) and pelops (large disposition) and pelops (large disposition). The statistics (large disposition) and pelops (large disposition). The coarbon Pelops (large disposition) and pelops (large disposition). The coarbon Pelops (large disposition) and pelops (large disposition). The coarbon Pelops (large disposition) and pelops (large disposition) and pelops (large disposition). The coarbon Pelops (large disposition) and pelops (large disposition) and pelops (large disposition). The coarbon Pelops (large disposition) and pelops (large disposition) and pelops (large disposition). The coarbon Pelops (large disposition) and pelops (large disposition) and pelops (large disposition). The coarbon Pelops (large disposition) and pelops (large disposition) and pelops (large disposition) and pelops (large disposition). The coarbon Pelops (large disposition) and p

Acknowledgments

I would like to thank Dr. Eric Chin, Nicole Gorny, and Paul Salib for their support and guidance through this project.

This poster was supported by the Cooperative Agreement This poster was supported by the Cooperative Agreement Number NUSCO300866 funded by the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention of the Department of Health and Human Services.

MPH Thesis – The Ohio State University

Columbus, Ohio

From August 2022 to May 2024, I pursued my Master of Public Health Degree at The Ohio State University College of Public Health. Under the supervision of Dr. Olorunfemi Adetona, I led a project that investigated the associations between occupational exposure to persistent organic pollutants and cancer risk among structural firefighters in Ohio. I presented this project at the Environmental Health Seminar Series within the college and won a best poster award during our graduate student poster session. If you are interested in reading the full thesis, please email me at aparamangadu@gmail.com.

Contents

Project Abstract	20
Research Poster	2.1

Project Abstract – MPH Thesis

Assessing Potential Smoke-Related Exposures to Persistent Organic Pollutants and Cancer Risk Among Structural Firefighters in Ohio

Aparna Mangadu¹, Olorunfemi Adetona¹, Ahmed El-Hellani¹, James Odei¹

¹The Ohio State University College of Public Health

Structural firefighting is an essential occupation and emergency response public service; however, structural firefighters are often exposed to chemical carcinogens in the form of smoke. These compounds include persistent organic pollutants such as brominated flame retardants, polychlorinated biphenyls, and organochlorine pesticides, all of which are present in household and consumer products. To characterize the relationship between the biological burden of property fire smoke constituents and cancer status among structural firefighters, we used biomarker data from serum samples to create conditional logistic regression models controlling for sex, age, metro area, and race. Initial descriptive analysis indicated that structural firefighters had significantly higher average lipid adjusted serum concentrations of PCB74, PCB99, PCB105, PCB114, PCB118, PCB138-158, PCB146, PCB153, PCB156, PCB157, PCB167, PCB170, PCB180, PCB187, PCB189, PCB184, PCB199, and B-HCCH. However, our conditional logistic regression model provided no evidence of an association between persistent organic pollutant serum concentrations and cancer risk among structural firefighters. Important limitations that may have reduced our ability to detect an association include single serum sample collection and a small participant pool. These limitations much be considered when interpreting the results of this study.

MPH Thesis Research Poster

COLLEGE OF PUBLIC HEALTH Assessing Potential Smoke-Related Exposures to Persistent Organic Pollutants and **Cancer Risk Among Structural Firefighters in Ohio** Aparna Mangadu, BS, MPH(c)1,2, Olorunfemi Adetona, PhD1,2, James Odei, PhD1,3 ¹ The Ohio State University College of Public Health; ² Division of Environmental Health Sciences, ³ Division of Biostatistics Methods Introduction Structural firefighting is an essential occupation and Recruitment and Sample Collection Statistical Analysis Serum Sample Processing & Analysis Collection vacutainers were placed in a rack for 30 minutes at room temperature emergency response public service Firefighters were recruited through virtual dissemination Cases: structural firefighters that have been Compared to the general population, structural firefighters of a flyer via Facebook and through visits to fire stations diagnosed with cancer within the last five years at at room temperature are at an increased risk of being diagnosed with cancer, and the time of participation in the study cancer is the leading cause of death among firefighters 1 interested firefighters were contacted and a sample Samples were centrifuged for 10 minutes at 1500 G and Controls: structural firefighters who have never collection visit was scheduled - visit to the fire station or Occupational exposure as a firefighter is classified as a Group been diagnosed with cancer at the time of the Clinical Research Center at The Ohio State University 1 carcinogen – carcinogenic to humans by the IARC ² participation in the study Serum from each collection vacutainer was aspirated into Structural firefighters are at risk of being exposed to various Descriptive Analysis: two-sample t-test for average three cryotubes using a transfer pipette and cryotubes wer A questionnaire was administered during the visit prior to lipid adjusted serum concentrations of each chemicals that have carcinogenic potential 3,4 stored in the freezer at -80°C until analysis biological sample collection to collect health status, contaminant between cases and controls navioral factor, and workplace factor information Serum samples analyzed at labs in the National Center for Cancer Risk Model: logistic regression matching 30-35 mL of blood was drawn from each participant using Environmental Health at the Centers for Disease Control cases and controls based on age (+/- 5 years), race, and Prevention for BFRs, PCBs, and OCPs using high 30-35 mL of blood was drawn from each participant collection vacutainers and taken back to the lab for sex, and metro area to see if lipid adjusted serum resolution gas chromatography isotope dilution/high resolution mass spectrometry concentrations are associated with cancer risk -200 iterations per contaminant **Results & Discussion** Descriptive Analysis (n=149) Cancer Risk Model code to view full results There have been limited studies that characterize the exposure-response relationship between exposure to property average odds ratio for 200 model iteration fire smoke constituents and cancer risk There is a need for studies that focus on investigating the potential relationship between cumulative smoke exposure Conclusions Strengths & Limitations **Future Directions** References and cancer risk among structural firefighters · On average, structural firefighters with · Our results can serve as a baseline for · By stratifying the lipid adjusted cancer had significantly higher lipid serum concentrations by future studies surrounding this topic **Objectives** percentiles, we will be able to adjusted PCB serum concentrations · Limited studies have attempted to Assess whether the biological burden of chemicals that may compared to firefighters without analyze the predictor as an ordinal quantify structural firefighter exposure indicate occupational exposure to smoke (BFRs, PCBs, and variable cancer to OCPs - our study adds to the current OCPs) is different between cancer and non-cancer · Our cancer risk model provided no body of literature surrounding this · We plan to create a statistical participants evidence that lipid adjusted serum model that investigates the concept Examine relationships between smoke exposure and cancer concentrations of persistent organic · Limitations associated with the study association between workplace risk among structural firefighters using potential chemical pollutants are associated with cancer design - small participant pool, missing and behavioral factors with short surrogates of cumulative property fire smoke exposure risk among structural firefighters covariates in model lived contaminants THE OHIO STATE UNIVERSITY mangadu.1@osu.edu Acknowledgements Research reported in this project was supported by the Ohio Bureau of Worker's Compensation We thank all the participating firefighters and fire departments across Ohio. COLLEGE OF PUBLIC HEALTH CPH.OSU.EDU

Research Analyst - University of Utah

Salt Lake City, Utah

From July 2024 to present, I have been working at a Research Analyst at The University of Utah, Department of Internal Medicine, Division of Infectious Diseases. My primary objective is to coordinate research activities for R01 and R21-33 NIH-funded research grants which focus on designing and implementing a mHealth application to improve etiological prediction for pediatric diarrhea in Utah, Mali, and Bangladesh. I also assist with other projects focused on sero-surveillance methods for enteric diarrheal pathogens.

Contents

Antibiotic Stewardship Abstract	23
Antibiotic Stewardship Poster	24
Cholera Scoping Review Abstract	25
Cholera Scoping Review Poster	26

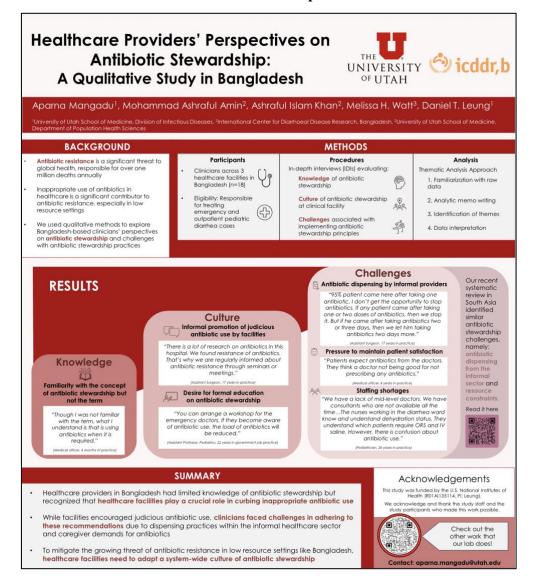
Antibiotic Stewardship Abstract

Healthcare Providers' Perspectives on Antibiotic Stewardship: A Qualitative Study in Bangladesh

Aparna Mangadu¹, Mohammad Ashraful Amin², Ashraful Islam Khan², Melissa H. Watt³, Daniel Leung¹

1Division of Infectious Diseases, Department of Internal Medicine, Spencer Fox Eccles School of Medicine at the University of Utah 2International Center for Diarrhoeal Disease Research, Bangladesh (icddr,b)

3Department of Population Health Sciences, Spencer Fox Eccles School of Medicine at the University of Utah


Background: Antibiotic resistance is a significant threat to global health and is estimated to be responsible for approximately 1.27 million deaths annually. The inappropriate use of antibiotics in healthcare is a significant contributor to antibiotic resistance, especially in low resource settings. We used qualitative methods to explore Bangladesh-based clinicians' perspectives on antibiotic stewardship and the challenges that providers and healthcare facilities face in upholding stewardship principles.

Methods: We recruited 18 clinicians across 3 healthcare facilities in Bangladesh. Clinicians were eligible if they were responsible for treating emergency and outpatient pediatric diarrhea cases. Indepth interviews explored clinicians' knowledge of antibiotic stewardship, the culture of antibiotic stewardship at their clinical facility, and challenges associated with implementing antibiotic stewardship principles. Interviews were audio recorded and transcribed. Using NVivo (version 12), we used a thematic analysis approach to identify and code themes around: 1) providers' understanding of antimicrobial stewardship, 2) presence of antibiotic stewardship in clinical facilities, and 3) challenges to antibiotic stewardship.

Findings: Participants had worked in clinical practice post training for a mean of 11.3 years (range: 3 months to 23 years). When asked about familiarity with antibiotic stewardship, few had heard the specific term, but most knew the concept. Participants stated that healthcare facilities host workshops that encourage clinicians to only prescribe antibiotics when clinically necessary, limit the use of antibiotics for pediatric diarrhea, and adjust treatment based on patient history. Participants suggested a need for more educational efforts to improve providers' knowledge and practice around antibiotic stewardship. We identified four themes related to antibiotic stewardship challenges: community-level antibiotic dispensing by informal providers, staffing shortages, patient beliefs about antibiotics for symptom relief, and facility pressure to maintain patient satisfaction.

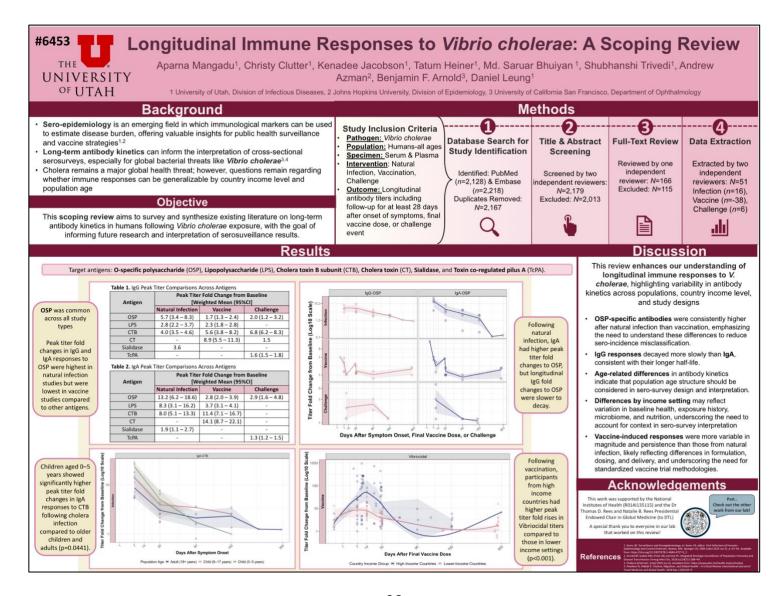
Interpretation: Healthcare providers in Bangladesh had limited knowledge of antibiotic stewardship but recognized that healthcare facilities play a role in curbing inappropriate antibiotic use. While facilities encouraged judicious antibiotic use, clinicians faced challenges in adhering to these recommendations due to dispensing practices within the informal healthcare sector and caregiver demands for antibiotics. To mitigate the growing threat of antibiotic resistance in low-resource settings like Bangladesh, healthcare facilities need to adapt a system-wide culture of antibiotic stewardship.

Antibiotic Stewardship Poster

Cholera Scoping Review Abstract

Longitudinal Antibody Responses to *Vibrio cholerae*: A Scoping Review

Aparna Mangadu¹, Christy Clutter¹, Md. Saruar Bhuiyan ¹, Shubhanshi Trivedi¹, Andrew Azman², Benjamin F. Arnold³, Daniel Leung¹


1Division of Infectious Diseases, Department of Internal Medicine, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake
City, Utah, USA

2Division of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

3 Francis I. Proctor Foundation and Department of Ophthalmology, University of California, San Francisco, San Francisco, California, USA

Cholera is a critical global health threat with significant morbidity and mortality, particularly in low- and middle- income countries. Understanding long-term kinetics of antibody responses can inform interpretation of cross-sectional sero-epidemiological studies assessing disease burden. We used scoping review methodology to identify existing literature from 1980 to 2025 containing longitudinal antibody kinetics in humans following exposure to Vibrio cholerae and associated vaccines. 51 studies representing adults (18-65 years) and pediatric (2 months-17 years) populations from 5 high income (21 studies), 3 upper-middle income (5 studies), 5 lower-middle income (24 studies), and 1 low-income (1 study) countries were included. 16 studies followed natural cholera infection, 38 involved vaccination, and 6 were human challenge models (Controlled Human Infection Model), with some overlap. Antibody responses following natural infection were significantly higher than those induced by vaccination, particularly against the Ospecific polysaccharide antigen. Younger children exhibited higher peak fold-change IgA responses than older children and adults across both infection and vaccine studies. Following vaccination, individuals from high-income countries showed higher IgA, IgG, and vibriocidal foldchange responses compared to those from lower-income settings. Limited data from challenge studies revealed slower decay of IgG compared to IgA and IgM. This review enhances our understanding of longitudinal immune responses to V. cholerae, highlighting variability in antibody kinetics across populations, geographic regions, and study designs, and underscores the need for tailored epidemiological approaches to address bacterial diarrheal diseases on a global scale.

Cholera Scoping Review Poster

